三、双重求和∑∑交换求和顺序

三、双重求和∑∑交换求和顺序

目录

一、复习求和符号∑二、二重求和的定义三、双重求和∑∑交换求和顺序

一、复习求和符号∑

自从约瑟夫·傅立叶于1820年引入求和符号∑(大写的希腊字母sigma)以来,求和∑以及双重求和∑∑在数学公式推导,命题证明中被经常使用,掌握它的定义和性质对于提高我们的数学能力是必不可少的。 注意我们在此只讨论有限项的求和。 结合律:

i

=

1

n

(

a

i

+

b

i

)

=

i

=

1

n

a

i

+

i

=

1

n

b

i

\sum_{i=1}^{n}( a_{i}+b_{i})=\sum_{i=1}^{n} a_{i}+\sum_{i=1}^{n} b_{i}

i=1∑n​(ai​+bi​)=i=1∑n​ai​+i=1∑n​bi​ 分配律:

i

=

1

n

r

a

i

=

r

i

=

1

n

a

i

(

r

为任意常数

)

\sum_{i=1}^{n} r a_{i}=r \sum_{i=1}^{n} a_{i} \quad( r为任意常数)

i=1∑n​rai​=ri=1∑n​ai​(r为任意常数) 从函数角度:

i

=

1

10

g

(

k

,

l

)

f

(

i

,

j

)

=

g

(

k

,

l

)

i

=

1

10

f

(

i

,

j

)

\sum_{i=1}^{10} g(k, l) f(i, j)=g(k, l) \sum_{i=1}^{10} f(i, j)

i=1∑10​g(k,l)f(i,j)=g(k,l)i=1∑10​f(i,j) g(k, l)是与下标i无关的函数 分段:

i

=

1

n

a

i

=

i

=

1

m

a

i

+

i

=

m

+

1

n

a

i

\sum_{i=1}^{n} a_{i}=\sum_{i=1}^{m} a_{i}+\sum_{i=m+1}^{n} a_{i}

i=1∑n​ai​=i=1∑m​ai​+i=m+1∑n​ai​

二、二重求和的定义

有一个n行m列的数表:

a

11

,

a

12

,

a

13

,

,

a

1

m

a

21

,

a

22

,

a

23

,

,

a

2

m

a

31

,

a

32

,

a

33

,

,

a

3

m

a

n

1

,

a

n

2

,

a

n

3

,

,

a

n

m

\begin{array}{l}{a_{11}, a_{12}, a_{13}, \cdots, a_{1 m}} \\ {a_{21}, a_{22}, a_{23}, \cdots, a_{2 m}} \\ {a_{31}, a_{32}, a_{33}, \cdots, a_{3 m}} \\ {\cdots} \\ {a_{n 1}, a_{n 2}, a_{n 3}, \cdots, a_{n m}}\end{array}

a11​,a12​,a13​,⋯,a1m​a21​,a22​,a23​,⋯,a2m​a31​,a32​,a33​,⋯,a3m​⋯an1​,an2​,an3​,⋯,anm​​

数表里的每个元素都由两个相互独立的数i,j决定,即每一项都是i,j的二元函数,一般项为aij ,i = 1,2…n; j = 1,2…m 这n × m项的和记为

j

=

1

m

(

i

=

1

n

a

i

j

)

\sum_{j=1}^{m}(\sum_{i=1}^{n} a_{ij})

∑j=1m​(∑i=1n​aij​) 或者

i

=

1

n

(

j

=

1

m

a

i

j

)

\sum_{i=1}^{n}(\sum_{j=1}^{m} a_{ij})

∑i=1n​(∑j=1m​aij​)

三、双重求和∑∑交换求和顺序

第i行的元素的和记为Ri:

R

i

=

j

=

1

m

a

i

j

=

a

i

1

+

a

i

2

+

.

.

.

+

a

i

m

R_{i} = \sum_{j=1}^{m} a_{ij} = a_{i1} + a_{i2} + ... + a_{im}

Ri​=j=1∑m​aij​=ai1​+ai2​+...+aim​ 一共有n行,所有行元素的和,即数表所有元素的和记为S:

S

=

i

=

1

n

R

i

=

i

=

1

n

(

j

=

1

m

a

i

j

)

S = \sum_{i=1}^{n}R_{i} = \sum_{i=1}^{n}(\sum_{j=1}^{m} a_{ij})

S=i=1∑n​Ri​=i=1∑n​(j=1∑m​aij​)

第j列的元素的和记为Cj:

C

j

=

i

=

1

n

a

i

j

=

a

1

j

+

a

2

j

+

.

.

.

+

a

n

j

C_{j} = \sum_{i=1}^{n} a_{ij} = a_{1j} + a_{2j} + ... + a_{nj}

Cj​=i=1∑n​aij​=a1j​+a2j​+...+anj​ 一共有m列,所有列元素的和,即数表所有元素的和记为S:

S

=

j

=

1

m

C

j

=

j

=

1

m

(

i

=

1

n

a

i

j

)

S = \sum_{j=1}^{m}C_{j} = \sum_{j=1}^{m}(\sum_{i=1}^{n} a_{ij})

S=j=1∑m​Cj​=j=1∑m​(i=1∑n​aij​) 所以

i

=

1

n

(

j

=

1

m

a

i

j

)

=

j

=

1

m

(

i

=

1

n

a

i

j

)

\sum_{i=1}^{n}(\sum_{j=1}^{m} a_{ij}) = \sum_{j=1}^{m}(\sum_{i=1}^{n} a_{ij})

i=1∑n​(j=1∑m​aij​)=j=1∑m​(i=1∑n​aij​) 也可以写成

1

<

=

i

<

=

n

,

1

<

=

j

<

=

m

a

i

j

\sum_{1<=i<=n,1<=j<=m}a_{ij}

∑1<=i<=n,1<=j<=m​aij​ 即二重和的和号(求和次序)可以交换。

但要注意,但求和项数变为无穷或者(一个或两个)和号变为积分号时,往往要求级数收敛或者函数可积,相应的交换和号的结论才能成立。

Example 1

i

=

1

4

j

=

1

i

f

(

i

,

j

)

\sum_{i=1}^{4} \sum_{j=1}^{i} f(i, j)

∑i=14​∑j=1i​f(i,j)交换求和次序后是什么样的呢? A.

j

=

1

i

i

=

1

4

f

(

i

,

j

)

\sum_{j=1}^{i} \sum_{i=1}^{4} f(i, j)

∑j=1i​∑i=14​f(i,j) B.

j

=

1

4

i

=

1

j

f

(

i

,

j

)

\sum_{j=1}^{4} \sum_{i=1}^{j} f(i, j)

∑j=14​∑i=1j​f(i,j) C.

j

=

1

4

i

=

j

4

f

(

i

,

j

)

\sum_{j=1}^{4} \sum_{i=j}^{4} f(i, j)

∑j=14​∑i=j4​f(i,j)

因为[1<= i <= 4][1<= j<= i] = [1<= j <= i <= 4] = [1<= j<= 4][ j <= i <= 4] 所以 选C,也可以穷举出所有元素,如果将i作为行号,j作为列号,对于

i

=

1

4

j

=

1

i

f

(

i

,

j

)

\sum_{i=1}^{4} \sum_{j=1}^{i} f(i, j)

∑i=14​∑j=1i​f(i,j),你会发现这些元素的排列类似于下三角矩阵的形式(按行求和),然后将按行求和切换为按列求和,也会得到C答案。

Example 2 求

k

=

1

n

i

=

1

k

i

a

i

j

k

(

k

+

1

)

\sum_{k=1}^{n} \sum_{i=1}^{k} \frac{ ia_{ij}}{k(k + 1)}

∑k=1n​∑i=1k​k(k+1)iaij​​交换求和次序后的表达式。 同样的,[1<= k <= n][1<= i<= k] = [1<= i <= k <= n] = [1<= i<= n][ i <= k <= n] 所以,

i

=

1

n

k

=

i

n

i

a

i

j

k

(

k

+

1

)

\sum_{i=1}^{n} \sum_{k=i}^{n} \frac{ ia_{ij}}{k(k + 1)}

∑i=1n​∑k=in​k(k+1)iaij​​,如果将i作为行号,k作为列号,对于

k

=

1

n

i

=

1

k

i

a

i

j

k

(

k

+

1

)

\sum_{k=1}^{n} \sum_{i=1}^{k} \frac{ ia_{ij}}{k(k + 1)}

∑k=1n​∑i=1k​k(k+1)iaij​​ ,你会发现这些元素的排列类似于上三角矩阵的形式(按列求和),然后将按列求和切换为按行求和。

Example 3

k

=

1

n

(

k

(

i

=

1

k

i

2

a

i

)

(

2

k

(

k

+

1

)

)

2

)

\sum_{k=1}^{n}(k( \sum_{i=1}^{k}\frac{ i^2}{a_{i}}) (\frac{2}{k(k + 1)})^2)

∑k=1n​(k(∑i=1k​ai​i2​)(k(k+1)2​)2) =

4

k

=

1

n

i

=

1

k

i

2

a

i

k

k

(

k

+

1

)

2

4\sum_{k=1}^{n} \sum_{i=1}^{k}\frac{ i^2}{a_{i}} \frac{k}{k(k + 1)^2}

4∑k=1n​∑i=1k​ai​i2​k(k+1)2k​ =

4

i

=

1

n

i

2

a

i

k

=

i

n

k

k

(

k

+

1

)

2

4\sum_{i=1}^{n}\frac{ i^2}{a_{i}} \sum_{k=i}^{n} \frac{k}{k(k + 1)^2}

4∑i=1n​ai​i2​∑k=in​k(k+1)2k​

注意,容易出错的地方

(

i

=

1

5

f

(

i

)

)

2

=

(

i

=

1

5

f

(

i

)

)

(

i

=

1

5

f

(

i

)

)

i

=

1

5

i

=

1

5

f

(

i

)

f

(

i

)

=

i

=

1

5

i

=

1

5

f

2

(

i

)

\left(\sum_{i=1}^{5} f(i)\right)^{2}=\left(\sum_{i=1}^{5} f(i)\right) *\left(\sum_{i=1}^{5} f(i)\right) ≠ \sum_{i=1}^{5} \sum_{i=1}^{5} f(i) f(i) = \sum_{i=1}^{5} \sum_{i=1}^{5} f^2(i)

(∑i=15​f(i))2=(∑i=15​f(i))∗(∑i=15​f(i))=∑i=15​∑i=15​f(i)f(i)=∑i=15​∑i=15​f2(i) 而是

(

i

=

1

5

f

(

i

)

)

2

=

(

i

=

1

5

f

(

i

)

)

(

i

=

1

5

f

(

i

)

)

=

i

=

1

5

j

=

1

5

f

(

i

)

f

(

j

)

\left(\sum_{i=1}^{5} f(i)\right)^{2}=\left(\sum_{i=1}^{5} f(i)\right) *\left(\sum_{i=1}^{5} f(i)\right) = \sum_{i=1}^{5} \sum_{j=1}^{5} f(i) f(j)

(∑i=15​f(i))2=(∑i=15​f(i))∗(∑i=15​f(i))=∑i=15​∑j=15​f(i)f(j)

–更详细内容可阅读《具体数学》第二章 和式

相关推荐